MEMORANDUM FOR THE ACQUISITION ENTERPRISE

FROM: SAF/AQ

SUBJECT: Guidance for e-Program Designations

Implementing the Department of the Air Force’s transition to Digital Acquisition involves artful execution of the “Digital Building Code.” The tabs in this memorandum provide the first iteration of the Department’s Digital Building Code, and also introduce the initial version of the e-Program Criteria Scorecard used by the Service Acquisition Executive (SAE) to assess a program for an e-Program designation.

The Digital Building Code is intended to be a living set of thoughtful standards, regularly updated and maintained as the Department learns during our digital transformation and as technologies continue to evolve. To this end, the Digital Building Code and e-Program Criteria Scorecard contained in this memorandum are the Department’s initial versions. Subsequent updates will supersede the versions contained here. These current versions, and future updates, will be posted to the SAF/AQ website at https://ww3.safaq.hq.af.mil/. Once posted to the website, the update will become the authoritative source of the guidelines and criteria.

Scaling Digital Acquisition tools, techniques, and practices requires a shared lexicon and understanding of terms. To help clarify past SAF/AQ direction, and provide a consistent vocabulary across the acquisition enterprise, use the following definitions to characterize the program’s acquisition approach:

1. Conventional Programs: Acquisition programs employing a traditional strategy using existing tools and processes to field and deliver warfighting capability. This is the “default” rating for a program until the SAE specifically designates a program as an e-Program.

2. e-Programs: Acquisition programs employing the “digital trinity” (i.e., digital engineering, agile software, and open systems architecture) of Digital Acquisition to replace, automate, or truncate real-world activities based on authoritative virtualization or automation in the digital world. The attached tabs provide detailed information for how the SAE will assess and identify activities as e-Programs. The SAE may delegate e-Program designations as required.

3. e-Series Programs: An e-Program with a strategic pre-planned replacement schedule (i.e., Series) based on a cadence driven by economic Total Cost of Ownership and life span to drive speed and agility to stay ahead of the threat by delivering at the pace of technology maturation.

These definitions provide the flexibility to characterize efforts at the Mission Design Series level, such as Ground Based Strategic Deterrent (an e-Program born digital) and Next Generation Air Dominance (the first e-Series Program), as well as subsystem level programs for legacy platforms that meet the criteria for an e-Program (e.g., the A-10 Rewing Program, the B-52 Commercial Engine Replacement Program). A shared understanding of what constitutes an e-Program or an e-Series Program implemented with an iterative approach and a clear focus on learning will help accelerate the speed of Digital Acquisition integration into our existing programs and posture us for future successes.
Digital Acquisition holds the key to unleashing the speed and agility we need to field capability at the tempo required to win in a future conflict with a peer competitor. The attached tabs give you an initial point of departure for executing programs to the Digital Building Code. I look forward to seeing your e-Program designation requests in the near future as we implement Digital Acquisition together!

Darlene J. Costello
Acting Assistant Secretary of the Air Force
(Acquisition, Technology & Logistics)
Table of Contents:

Tab 1: Digital Building Code for Digital Engineering
Tab 2: Digital Building Code for Agile Software
Tab 3: Digital Building Code for Open Systems Architecture
Tab 4: e-Program Criteria Scorecard
TAB 1: DIGITAL BUILDING CODE FOR DIGITAL ENGINEERING

As discussed in *Bending the Spoon: Guidebook for Digital Engineering and e-Series*, the key to employing Digital Engineering is achieving a **measure of authoritative virtualization that replaces, automates, or truncates formerly real-world activities**. This is how you realize game-changing agility that Digital Acquisition can deliver for your program and our warfighters. And it is also how you will realize the return on investment (ROI) for your digital transformation efforts. The Digital Building Code for digital engineering which follows provides fulsome guidance to help you “bend the spoon.”

The following guidance is provided to assist PEOs/PMs to determine and implement Digital Engineering:

1. **Develop digital models of systems**
 1.1. Build and maintain model-based representations of systems in commercial-off-the-shelf (COTS) architecture tools using Systems Modeling Language (SysML), or equivalent modeling language. This enables the effective exchange of information including requirements, system functions, and process flows between all organizations involved in the development process.
 1.2. Reference an established style guide to build and maintain the models. Consult the Air Force Digital Guide (https://usaf.dps.mil/teams/afmcde) for the latest guidance on the most suitable style guide.
 1.3. Encapsulate all necessary elements in models with appropriate tags to facilitate tracing to requirements and certifications. Clearly link requirements to planned verification activities (e.g., technical reviews, certification, testing plans, procedures).
 1.4. Construct models to enable the following to be traced from the requirements: analysis of requirements, system architecture design, allocations, interfaces, certifications, and functional thread analysis.
 1.5. Include capabilities to predict operational performance and quantify uncertainty in models of a system or subsystem in a simulated, representative environment.

2. **Develop a digital twin and digital thread**
 2.1. Establish and manage a digital thread that links models and digital artifacts and creates an authoritative source of truth. A program or a platform may be an integrator of multiple digital threads comprising the system. The intent is to create a comprehensive system digital thread. Update digital artifacts throughout the system lifecycle to maintain a digital twin of the system.
 2.2. Construct digital threads using a data architecture that defines the data, schemas, integration, transformations, storage, and workflows required to design and sustain the system. The data architecture should also define naming conventions, data types/formats, integrity, archival/retention, security, flows, pipelines, linkage with associated metadata, and transformations.

3. **Implement an integrated digital environment**
 3.1. Use an integrated digital environment (IDE). An IDE is a compilation of data, models, and tools for collaboration, analysis, and visualization across functional domains. An IDE includes the methodology and specification for data, models, and tools arrangement with processes and procedures to exploit informational results.
 3.2. An ideal IDE leverages the following:
3.2.1. Development Platform: CloudONE, PlatformONE, and DataONE.

3.2.2. Architectural Modeling: COTS software such as CAMEO Systems Modeler, Sparx Enterprise Architect, or IBM Rhapsody.

3.2.3. Product Lifecycle Management (PLM): Siemens Teamcenter or approved alternative. For additional information: AF-PLM-CSO@us.af.mil.

3.2.4. Operational Analysis: AFSIM or other M&S environments.

3.2.5. Requirements Management: COTS software such as DOORS or CAMEO Systems Modeler.

3.3. Determine and implement an IDE strategy that specifies preferred digital tools, considers tools accessibility and security considerations, and outlines the impact this strategy will have on internal and industry collaborations (e.g., tool integration, data interoperability). A cost benefit analysis should assess whether to acquire and deploy tools, use DoD High Performance Computing Modernization Program (HPCMP) resources, or negotiate the use of tools by industry performers. Tips for initial implementation of an IDE can be found at the Air Force Digital Guide: https://usaf.dps.mil/teams/afmcde.

4. Employ a tailored digital strategy for contracting with industry

4.1. Because digital transformation is in its early stages, contracting guidance is rapidly evolving. For the latest recommendations and templates, please see the Air Force Digital Guide contracting section: https://usaf.dps.mil/teams/afmcde/SitePages/Model-based-Contract-Language.aspx. Here practitioners can access information on “Key Digital Features” that should be considered during contracting actions. In addition, programs can access example contract language from other acquisitions. Additional contracting Tactics, Techniques, and Procedures (TTPs) on this and related topics will be added over time and available online through Air Force Contracting Central.

5. Ensure organizational readiness for Digital Engineering

5.1. To ensure a central point of contact for tools and infrastructure needs, enable consistent implementation and coordination, and ensure sharing of lessons learned and collaboration, programs may designate the Chief Engineer, or an alternate, as the DE focal point within their organization. The DE focal point is responsible for specifying general digital engineering training, courses, and certifications for the program to ensuring an organizational minimum working knowledge of digital engineering, regardless of function. Examples of available workforce training for digital tools and related infrastructure, include:

5.1.1. SysML based tools (or their equivalent). Also consider other related training, such as UPDM, UAFP, UML, BPMN, and XML.

5.1.2. CloudONE and PlatformONE services. Training resources are available on the DAF Chief Software Office website at https://software.af.mil/training.

5.1.3. DevSecOps processes. Training resources are available on the DAF Chief Software Office website at https://software.af.mil/training.

5.1.4. Applicable modeling techniques for applications such as structures, design/analysis (e.g., CAD, FEA, CFD), embedded software, electronics, and other disciplines as appropriate.

5.2. Select training and organizational readiness information can also be found in the Air Force Digital Guide at https://usaf.dps.mil/teams/afmcde.

6. Implement Digital Acquisition
6.1. Digital Engineering will fundamentally transform how we conduct systems engineering and acquisition processes. For example, all acquisition plans, program and technical reviews, and testing and certification processes will shift from a fundamentally document-based construct to one based on models and digital artifacts. Key steps toward this transformation for programs include:

6.1.1. Link model based engineering activities and digital artifacts to acquisition planning in support of the Capability Development Document (CDD), Acquisition Strategy, Systems Engineering Plan (SEP), Life Cycle Sustainment Plan (LCSP), Test and Evaluation Master Plan (TEMP), and other acquisition artifacts. As program modelling implementation matures, programs should seek automated and model-based updates to these artifacts to eliminate stagnant acquisition information. Eventually, programs should strive to replace document-based acquisition information with sufficiently mature and authoritative models where appropriate. Any program not pursuing digital engineering principles should document their rationale in the acquisition strategy for Milestone Decision Authority (MDA) approval or redirection.

6.1.2. Leverage models to support acquisition reviews, including Milestone Reviews, In-Progress Reviews, and other acquisition reviews and program oversight activities.

6.1.3. Conduct Systems Engineering Technical Reviews (SETRs) (to include System Requirements Reviews, System Functional Reviews, Preliminary Design Reviews, Critical Design Reviews, and configuration audits) using models and digital artifacts in lieu of document-based artifacts to the maximum extent practicable. At technical reviews, when possible, programs should use information from the digital authoritative source of truth to assess risks, issues, opportunities, and mitigation plans in order to understand cost, schedule, and performance implications.

6.1.4. Trace and validate requirements based on models and digital artifacts to the maximum extent practicable.

6.1.5. Programs and the Developmental Test and Operational Test communities should engage early to determine strategy and planning for employing model-based test and evaluation activities. Verification and validation of models is critical to achieving authoritative virtualizations of systems.

6.1.6. Leverage models and digital artifacts for certification events (e.g., airworthiness, safety, nuclear surety). Engage with certification offices to automate as much of these certification processes as practicable.

6.1.7. Leverage models and digital artifacts for planning and tracking reliability, maintainability, availability, sustainability, and other program technical performance measures.

6.1.8. Craft requests for proposals and resulting contracts to contain enforceable language that implement digital acquisition strategies and ensures deliverables are provided in the appropriate model-based and open formats.

6.2. Additional information on many of the above considerations can be found in the Air Force Digital Guide at https://usaf.dps.mil/teams/afmcde.

7. Track Digital Maturity Metrics

7.1. Track progress using the DAF Digital Maturity Metrics to baseline and manage execution of program or organizational digital transformations. These metrics can be used at the start of a
program’s journey to inform program or organizational digital implementation strategies, by PEOs to make comparisons and pool investments across portfolios, and to track progress toward successful implementation. These metrics can be found in the Air Force Digital Guide at https://usaf.dps.mil/teams/afmcde.
Over the past two years, we have seen software development transformation take root across the Air Force and Space Force in programs ranging from the F-16 to the Ground Based Strategic Deterrent (GBSD) to the Advanced Battle Management System (ABMS) to the T-38A. This transformation was propelled by adoption of the DevSecOps approach, agile software development, and open system architectures based on containerized microservices (orchestrated by Kubernetes and secured with Zero Trust). It will continue to expand through the use of common software development tech stacks that are converging around the CloudONE/PlatformONE environment. The payoffs have been game-changing for pathfinding programs. In 2020, the U-2 program made DoD history by becoming the first platform to push a software update to a jet while in flight (made possible via Kubernetes-deployed software containers). Just weeks later it became the first platform to put an artificial intelligence (AI) “operator” in control of a mission system with the deployment of the “ARTUµ” application. These transformational leaps forward attest to just how powerful this approach can be for existing programs as well as new ones.

It is now time to take this Agile Software transformation from experimental start-up phase to a coordinated, standards-based scale-up across the Department. System and component interoperability, code reusability, security assurance and continuous authority-to-operate (cATO), and other efficiencies – not to mention the Department-wide enablement of AI and machine learning (ML) – can only be fully realized if the Department converges around common development standards, many of which are outlined below.

The following standards employ open system architectures, ensuring the Department is postured to adapt as new technologies, methods, or needs arise. (For clarification, a modular open systems approach, or MOSA, is the process programs should leverage to achieve an open systems architecture [OSA]). Convergence on development standards does not mean innovation stops; rather, convergence around these development standards is what will unleash functional innovation at scale, and allow software development teams to focus on rapid development and deployment of new capabilities warfighters count on.

The following guidance is provided to assist PEOs/PMs to implement Agile DevSecOps software development, or “Agile” for short:

1. Implement DevSecOps software development methodology and reference design

1.1. Adopt the use of Agile DevSecOps methodology as guided by the Department of the Air Force Chief Software Officer (DAF CSO) for all non-commercial software development, including development work performed by our Defense Industrial Base (DIB) partners.

1.2. Move away from Waterfall-based development to Agile. Many programs are adopting Agile for their software development but leverage waterfall-like processes for their program management. This brings all the impediments of waterfall while not fully benefiting from the return on investment of Agile. Programs should adopt end-to-end Agile principles to the maximum extent practicable.

1.3. Implement the DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes along with or including industry partners.

1.3.1. The Minimum Viable Product (MVP) requirements in this reference document are continuously updated and precisely define the requirements for DoD-wide reciprocity including Kubernetes, the Sidecar Container Security Stack (SCSS), and Open Container Initiative (OCI) compliant containers.
1.3.2. This guidance is also updated to be consistent with the Defense Information Assurance (IA)/Security Accreditation Working Group (DSAWG) DevSecOps publications released by the DSAWG DevSecOps group, DoD CIO, and USD(A&S), including but not limited to Kubernetes Security Technical Implementation Guide (STIG), Container Security Requirements Guide (SRG), Container Hardening Guide, and cATO guidance documents.

1.4. For embedded systems and systems that use a real-time (RT) operating system (RTOS), only use RT hardware, RTOS, and RT software when necessary. Leverage open architecture, Kubernetes, and non-RT hardware to the maximum extent practicable. Programs should expend their best effort to decouple RT from non-RT software, and implement and improve the PlatformONE Big Bang instance (Kubernetes, Service Mesh, and containers) in RT systems as necessary.

2. **Adopt the following common enterprise services and tooling standards**

2.1. Leverage PlatformONE (P1) and discontinue building new or competing enterprise-wide Continuous Integration/Continuous Delivery (CI/CD) pipelines and DevOps or DevSecOps platforms. PlatformONE is a pay-per-use model which can provide significant cost savings to DAF programs.

2.1.1. Leverage either the ABMS – P1 Party Bus (multi-tenant) or a dedicated PlatformONE Big Bang instance (dedicated platform) without “forking” its code to ensure Repo One remains the source of truth for its code base.

2.1.2. All software factories should leverage and contribute to the PlatformONE baseline on Repo One. PlatformONE is responsible for managing and enabling the environment, CI/CD pipeline, and Service Mesh layers. The software factories can focus on delivering mission capabilities by leveraging PlatformONE.

2.1.3. Existing and new DevOps, DevSecOps, CI/CD pipelines, and other software factory types should register with the DAF CSO as a DAF software factory.

2.1.4. Programs leveraging these capabilities will need to use the Cloud Native Access Point, the DAF Zero Trust capability, to access Cloud providers and potentially on-premise environments when available. This will increase security, reduce the attack surface, and facilitate remote work, including for our DIB partners.

2.2. Software intensive programs and all ACAT I programs need to work with applicable test labs, nuclear surety authorities, airworthiness authorities, and other test/certification teams to deploy PlatformONE Kubernetes environments on premise to enable hardware in the loop testing using DevSecOps automation and flexibility.

2.3. Leverage Repo One as the centralized source code repository for all code (e.g., Infrastructure-as-Code, Configuration-as-Code, container source code, Kubernetes distributions) to enable code reuse across the Department and DIB partners.

2.3.1. Check Repo One to see if existing “Lego block” capability code already exists. Use Repo One capabilities to the maximum extent practicable. If an existing Repo One capability doesn’t fully address program requirements, every effort should be made to contribute missing capabilities back to Repo One.

2.3.2. Avoid the “forking” of Repo One code. Instead, contribute back to Repo One so the Department can leverage money already spent, consistent with Office of Management and Budget Memorandum M-16-21 (Federal Source Code Policy: Achieving
Efficiency, Transparency, and Innovation through Reusable and Open Source Software) to contribute to open source projects and open sourcing of agency code.

2.4. Use only approved sources for DoD containers. Currently, Iron Bank and Registry One are the only approved sources for DoD containers (with DoD-wide reciprocity).

2.4.1. Additionally, programs are encouraged to contribute back to the Iron Bank container library to benefit the entire enterprise through reusability of code. The Iron Bank container onboarding guide is available at: https://repo1.dsop.io/dsop/dccscr/tree/master/contributor-onboarding

3. Implement the following organization staffing, leadership, and training guidance

3.1. Programs should designate a Chief Software Engineer (CSE) focal point within the organization to ensure a central point of contact for software and enable centralized coordination, sharing of lessons learned, and collaboration across programs. This focal point will also serve as a joint liaison between the Program Office and the DAF CSO office.

3.2. Continuous Learning is critical to ensure our talent, whether civilian, military or contractor, can keep up with software innovation. In a partnership with the Air Force Chief Information Officer, programs should continuously leverage training content provided within the Air Force Digital University and the DAF CSO.

3.3. The following training is recommended for Chief Engineers, Senior Material Leaders, Material Leaders, Program Managers, and Software Engineers:

3.3.1. Domain Driven Design (how to cut monolithic applications into micro-services, which is critical to cutting legacy systems into containers).

3.3.2. Test-Driven Development.

3.3.3. Strangler Pattern (how to deliver new capabilities while refactoring legacy and not the other way around).

3.3.4. Microservice Architecture.

3.3.5. Prevention of Lock-In (ensure teams understand how to not get locked-in to Cloud providers and products).

3.3.6. Kubernetes (K8s).

3.3.7. Containers.

3.4. Leverage training content provided within the Air Force Digital University and the DAF CSO (https://software.af.mil/training).

4. Start tracking performance metrics for software factories and Agile teams

4.1. To demonstrate return on investment and effectiveness, programs should collect DevOps Research and Assessments (DORA) metrics and other data points, to include Deployment Frequency (DF), Mean Lead Time for changes (MLT), Mean Time To Recover (MTTR), and Change Failure Rate (CFR). Collected DORA metrics should be reported to the PlatformONE DevSecOps DORA metrics team to the maximum extent practicable.

A living repository of this standards information, documentation, and learning resources can be found at https://software.af.mil/dsop/documents/. There is also an Implementation Primer at this website which outlines initial steps for applying this guidance along with answers to common questions. The DAF Chief Software Office maintains this standards repository, and is available for any questions regarding this guidance at af.cso@us.af.mil.
The term “Open Architecture” has been widely used and is often misused. In defense acquisition, it refers to adopting consensus-based standard interfaces, acquiring components and subsystems that comply with these interfaces, and integrating these components or subsystems using appropriate interface standards. Programs leverage a modular open systems approach, or MOSA, to implement an open system architecture (OSA) for their systems. When implemented properly, an OSA creates a more agile, evolvable system and can bend cost, schedule, and performance curves back in our favor by driving increased competition, innovation, and adoption of mature technology from a broad range of sources – ultimately getting more cutting edge capability to the warfighter faster.

It is not enough to say we need to adopt Open Systems Architectures or move more programs to a specific government-owned architecture. Effectively implementing OSA requires fundamental changes in our business and technical processes in order to provide industry with the information required, focus our own energy on the activities required to drive change, and become smarter developers and buyers. A key enabler for OSA is the adoption of an open business model, which requires increased transparency to leverage the contributions of multiple contractors to share risk, maximize asset reuse, and reduce total ownership costs. We also need to resource our Program Offices and train our acquisition and engineering professionals in OSA design so they can drive this new approach. Finally, we all must ensure acquisition leadership prioritizes OSA as much or more than near-term cost, schedule, and performance.

It is important to understand what OSA means in the context of Digital Acquisition, and how it must be implemented. The following guidance is provided to assist PEOs/PMs in implementing OSA:

1. Implement an Open Systems Architecture
 1.1. Programs should be designed and developed, to the maximum extent practicable, with a modular open system approach (MOSA). To employ a MOSA, programs should leverage consensus-based standards at all appropriate interfaces and employ a system architecture that allows separable major system components and modular systems at the appropriate level to be incrementally added, removed, or replaced throughout the lifecycle.
 1.2. Generate and maintain a SysML, or equivalent, open and widely adopted modeling language, based on a digital model of the platform, systems, subsystems, or components.
 1.3. In order to build an integrated family-of-systems with interoperability across the Air Force and Space Force from the beginning, the digital model of each program’s architecture needs to be accessible by all DAF programs (based on user clearance and the type of Intellectual Property (IP) rights acquired) and refreshed to ensure accuracy and relevancy of the data. Therefore, programs should publish (and refresh as changes occur) the digital model(s) of their architecture to the Chief Architect-managed, cloud-based, common architecture environment at each classification level (which currently houses Cameo-oriented toolchains).
 1.4. To facilitate the movement to OSAs across both services, contracts should include relevant provisions to ensure the appropriate technical baseline documentation is made available digitally from the beginning, along with appropriate IP rights (or, in the alternative, specially negotiated licenses that will not adversely impact another platform’s ability to reuse that data— including platforms not procured by an Air Force or Space Force acquisition organization). Taking a “Smart IP” approach is an essential aspect of employing OSA because it permits the government to use, release, and disclose technical baseline documentation to product support contractors, thereby yielding cost savings or avoidance, schedule reduction, opportunities for technical upgrades to address emerging threats, and increased interoperability—all of which accelerate
program agility. Unless a program’s contracts implement OSA to an appropriate level of indenture of the weapon system’s architecture, and the program acquires the necessary technical baseline documentation accompanied by the appropriate IP rights, the program will fail to reap the benefits of OSA. It is also essential to design the program’s system architecture in a manner that is enticing to a broad ecosystem of developers, especially non-traditional commercial developers. Defining specific and appropriate proposal content and contract data requirements lists (CDRLs) will support development, delivery, and curation of OSA technical baseline models with appropriate government license rights for review at recurring program and design reviews; if architectural models are not yet feasible for your program, do the same for OSA technical baseline documentation.

1.4.1. Ensure OSA models are linked to CDDs (or equivalent), acquisition strategies, SEPs, and LCSPs to identify: (a) to what level of indenture of the Work Breakdown Structure (WBS) for subsystems and components the program intends to implement OSA, (b) what CDRL deliverables awardees will deliver, and (c) what IP rights those awardees will grant to those IP deliverables. Those deliverables should include: (a) technical data that describes the weapon system’s system and software architecture, (b) performance specifications describing the end-state functionality of all hardware components and computer software configuration items (CSCI)(or software units) comprising that weapon system, (c) modular system interfaces that define the shared boundary between those components and CSCIs, and (d) verification/validation data that demonstrates the contractor developed and produced the weapon system consistent with OSA requirements included in the contract. As described in Tab 1, all of these document-based processes should shift to model-based and automated processes as we mature this digital transformation.

1.5. As the Air Force and Space Force continue to develop a “top-down” digital architecture and programs build the “bottom-up” architecture, a more integrated and interoperable Joint Force will emerge. On occasion, architecture-level requirements will be derived from strategic level decisions. When that occurs, the DAF Chief Architect will translate the senior guidance into architecture-level technical requirements. Therefore, program managers – in coordination with the DAF Chief Architect, headquarters Service staffs, and the relevant Major or Field Command – may need to adjust Acquisition Program Baselines (APBs) in accordance with strategic level-derived, architecture requirements.

1.6. To facilitate architecture integration across PEOs/TEOs and move toward transforming our vertical programs into a horizontal ecosystem – as well as identify opportunities for modularity and new or updated standards – the DAF Chief Architect will host Architecture Review Boards that enable each PEO/TEO Portfolio Architect (see section below) and select Major or Field Command and Air/Space Staff liaisons to collaboratively pursue these objectives. PEO/TEO Portfolio Architects should contribute to and participate in relevant Architecture Review Boards.

2. Leverage Open Standards

2.1. Too often the tendency in government programs is to develop stove-piped and highly coupled systems using proprietary interfaces, or at best to develop a government standard that only works within one system or a limited set of systems. Instead, in order to leverage the pace, scale, investment, and capability of the commercial innovation base, programs should adopt commercial technology and leverage commercial open (non-proprietary) standards to the maximum extent practicable. For example:
2.1.1. Commercial internet enables rapid innovation through a set of “convergence layers,” the most important being Internet Protocol version 6 (IPv6). This also enables diversity in link technologies since packets can be routed over many different link technologies (e.g., Wi-Fi, fiber, cellular). Therefore, when designing a network, programs should design to commercial Transmission Control Protocol/Internet Protocol (TCP/IP) and related standards.

2.2. It is better to use something that works and is commercially available and regularly matured, than attempt to create the “perfect standard” that too often never materializes or is unable to stay current with agile updates. Where no reasonable commercial standard exists, programs should leverage Government Reference Architecture Open Standards to ensure interoperability and ease of system integration and modernization. For example:

2.2.1. Open Mission Systems (OMS) is a non-proprietary open standard for integrating hardware-based subsystems and software services into mission packages. The OMS standard establishes a set of interface and compliance requirements that promote affordable technology refresh, capability evolution, and reuse. OMS is a consensus-based standard developed by an industry-led consortium in use since 2012. Therefore, when designing subsystems and services, and in accordance with the SAF/AQ, AFMC/CC co-signed memorandum Use of Open Mission Systems/Universal Command and Control Interface, programs should adopt the OMS Open Architecture Standard in cases where a commercial standard is unavailable or a poor fit.

2.2.2. Open Communications Subsystem (OCS) is a non-proprietary open standard that separates antennas from radios and processors, and defines everything behind the physical aperture via software. OCS allows processors to share antennas and insert waveforms and data transforms without hardware modifications. Therefore, when designing a communications system, programs should adopt the OCS Open Architecture Standard in cases where a commercial standard is unavailable or a poor fit.

2.2.3. Universal Command & Control (C2) Interface (UCI) is a non-proprietary open standard that enables cross-platform data exchange in a machine-to-machine manner between heterogeneous systems. Therefore, when designing a C2 system, and in accordance with the SAF/AQ, AFMC/CC co-signed memorandum Use of Open Mission Systems/Universal Command and Control Interface, programs should adopt the UCI Open Architecture Standard in cases where a commercial standard is unavailable or a poor fit.

2.2.4. Universal Armament Interface (UAI) is a non-proprietary open standard that fully defines the physical, logical, and mechanical interface between smart air to ground munitions and carriage systems and platforms that employ them. Therefore, when designing or integrating a smart air-to-ground munition, and in accordance with the SAF/AQ signed memorandum Standardized Interface for USAF Air-to-Ground Weapons: Universal Armament Interface (UAI), programs should adopt the UAI standard in cases where a commercial standard is unavailable or a poor fit.

2.2.5. The DevSecOps (development, security, operations) Reference Design is a government reference design signed by the DoD Chief Information Officer, USD(A&S), and DAF CSO to enable software to operate under a variety of conditions and platforms, scale as needed, maintain cyber security from development to deployment, code once and deploy rapidly onto many platforms, and maintain a
cATO. Therefore, when writing software, programs should adopt the DoD Enterprise DevSecOps Reference Design (see Tab 2 for further detail).

2.2.6. Many other military unique Open Architecture and Open Standards exist, or are maturing, across the DAF, such as Resilient Embedded GPS/INS (R-EGI), Sensor Open Systems Architecture (SOSA), Big Iron, Common Open Architecture for Radar Programs (COARPS), and Weapon Open System Architecture (WOSA). Therefore, as programs are beginning to define and build their system architectures, they should leverage these existing and emerging architecture standards to the maximum extent practicable. A more exhaustive list of current efforts, along with appropriate POCs and application areas, can be found at: https://usaf.dps.mil/teams/afmede/SitePages/Government-Reference-Architecture.aspx

2.3. In general, and in accordance with DoD Instruction 4120.24, programs should leverage commercial and consensus-based standards whenever possible. When neither an applicable commercial nor government standard exists, programs should attempt to update existing standards and grow them to meet their needs. Only when programs have exhausted these options should they seek development of a new OSA standard in partnership with industry or the DAF Chief Architect Office (SAF/CAO) and the DAF Standardization Executive (SAF/AQR). For additional information on leveraging existing industry and government standards, see DoDI 4120.24, Defense Standardization Program (DSP), and AFI 60-101, Materiel Standardization. For additional information on updating existing government standards or creating new ones, see DoDM 4120.24.

2.4. Interfaces and documentation often evolve over time based on emerging requirements, technology, and standards. In order to ensure interfaces and documentation are updated and maintained, maintain a list of key interfaces and document the standard used at these interfaces, including the justification for their selection.

3. **Designate, empower, resource, and train System Architects in Program Offices**

3.1. Programs should identify staff responsibilities for managing open architecture implementation and may wish to designate a System Architect.

3.2. To enable platforms and systems to work together as a family of systems (not simply systems), PEOs/TEOs should consider designating a Portfolio Architect responsible for guiding the implementation of Open Architecture across the PEO/TEO’s portfolio.

3.3. Continuous learning is critical to ensuring our talent, whether civilian, military, or contractor, can keep up with innovation in technology to see where horizontal and portfolio gains can be made. The DAF Chief Architect Office, in partnership with DAU, AFIT, and the Open Architecture Management Office (OAMO), is continuously updating and augmenting training materials and accessibility. The following training material is recommended:

3.3.1. Air Force Life Cycle Management Center, EZA-064, Introduction to Open Architectures.

3.3.3. Defense Acquisition University, CLE019, Modular Open Systems Approach.
3.3.4. Other training as defined by the DAF Chief Architect in coordination with the OAMO.

3.3.5. Additional training and information will also be coming to the Air Force Digital Guide (https://usaf.dps.mil/teams/afmcde) and other DoD sites.

4. **Track and report architecture performance metrics**

4.1. To measure progress and track approaches that are working or require modification, programs and organizations should start collecting architecture metrics that can be assessed across teams with minimal disparity. The DAF Chief Architect in partnership with the Portfolio Architects will develop a digital toolchain to minimize the burden of tracking metrics. The following metrics can be used to track implementation and maintenance of Open Systems Architecture:

4.1.1. Does the program leverage commercial open standards, and if so, what is the standard(s) and for what interface(s)?

4.1.2. Does the program leverage a Government Reference Architecture (GRA), and if so, is it being followed?

4.1.3. Does the verification/validation data demonstrate the contractor developed and produced the weapon system consistent with OSA requirements included in the contract?

4.2. Architecture-level metrics is a growing field with opportunity for improvement. PEO/TEOs are encouraged to recommend additional metrics to the DAF Chief Architect.

No guidance can account for every situation our acquisition workforce will face. In general, programs can use the following litmus test to know whether they are taking the right approach to Open Systems Architecture to yield its transformative benefits:

“*Can one or more qualified third parties add, modify, replace, remove, or support a component or subsystem of this system; and can a separate system or platform integrate and share data with my system, based on open standards and published interfaces?*”

If the answer to this question is yes, the program is on the right path.
1. Introduction

The Service Acquisition Executive (SAE) designation of a program or subsystem as an “e-Program” is ultimately a subjective judgment. However, the SAE will rely upon two “yardsticks” for making this determination:

1.1. An evaluation of how closely the program adheres to the Digital Building Code articulated in Tabs 1 - 3, and

1.2. An assessment of the degree to which a program meets the criteria on the e-Program Criteria Scorecard outlined below.

As more programs are designated, the precedents set by existing e-Programs will provide additional clarity for making determinations on new candidates.

2. Scorecard Criteria

2.1. Is the Digital Trinity implemented within the program and across the lifecycle? The answer to this question pivots around the proficiency of the program in implementing the digital trinity across all three elements (i.e., digital engineering, agile software, and open system architecture) and over the lifecycle of the program. It also includes an assessment of the sufficiency to which specific techniques, tools, or practices in each of the three elements of the digital trinity are implemented within the program. The following questions focus on the assessment of digital trinity implementation and the extent of the lifecycle to which they have been applied.

2.1.1. Digital Engineering. Are digital engineering tools, techniques, and practices implemented in the program? Evidence of a sound digital engineering capability can be assessed with the following questions:

 - Infrastructure
 - Does the program have a process in place to govern which digital engineering tools can be accessed and used?
 - Does the program have guidance in place to ensure consistent use and implementation of digital tools?
 - Is there an underlying digital infrastructure in place to enable distributed engineering and decision-making?
 - Are all elements of the program interoperable in tool use, inputs/outputs, and run environments?
 - Does the program’s extended enterprise have the ability to collaborate within the integrated digital environment (local and remote)?
 - Is there a digital infrastructure in place to provide the necessary hardware and software development?
 - Is the infrastructure available at all required classification levels for effective digital engineering activities?
 - Are the appropriate security processes in place to ensure the availability, confidentiality, and integrity of digital engineering data at each security classification level?
− **Modeling and Analysis**
 o Does the program have a single, authoritative source of truth (ASOT) for its digital engineering enterprise?
 o Are there established modeling metrics for measuring model quality and/or effectiveness?
 o Is there a model-based method of conducting verification and validation of systems?

− **Process and Policy**
 o Is there a documented model use strategy within the digital engineering enterprise?
 o Are there sound configuration management controls in place?
 o Are there documented verification and validation processes, and can they be automated?
 o Does the program utilize model-based system representations and architecture tools consistently across the digital engineering enterprise?
 o Do technical processes adequately keep pace with digital engineering innovations?
 o Are technical management processes in place to ensure there is an appropriate level of discipline and rigor within the digital engineering enterprise?
 o Is the User Interface (UI) specified adequately, and can the digital engineering artifacts be visualized in an effective manner?

− **Workforce and Culture**
 o Do employees have the necessary modeling skills and data stewardship to be effective in the integrated digital environment?
 o Do employees across their enterprise have a common, digital engineering understanding to consistently describe digital engineering activities?
 o Does the workforce demonstrate consistent use of digital engineering artifacts and architectures in their daily activities?
 o Are program technical and milestone reviews, certifications, and audits conducted via the integrated digital environment? Are these processes automated?

2.1.2. **Agile Software.** Are DevSecOps software development practices, tools, and techniques implemented across the program? Evidence of an agile software development capability can be assessed with the following questions:

− **Development Methodology**
 o Is your development organization employing Agile, DevSecOps or Test-Driven-Development (TDD) approaches to planning, development, testing, deployment, and operation of software?
 o Is your organization employing an automated Continuous Integration/Continuous Delivery approach to software deployment (including continuous integration of security throughout the development
process, and authoritative automation of unit, integration, security, and system testing)?

- **SW and Infrastructure Architecture**
 - Does your system employ a service-oriented architecture (SOA) or a loosely-coupled microservices architecture?
 - Are your application components (“LEGO blocks”) or microservices containerized?
 - Does your system follow the DoD Enterprise DevSecOps Reference Design?
 - Does your system align with the ABMS network architecture and is it integrated with the ABMS “IoT.mil” network?

- **Infrastructure and Tooling**
 - Is your system using cloud/hybrid cloud infrastructure to the maximum extent practicable?
 - Is your system using a PlatformONE DevSecOps tech stack?
 - Does your system employ existing “LEGO block” DoD containerized services (in Iron Bank) wherever applicable?
 - Does your system employ a container orchestration service (e.g., Kubernetes) and service mesh service (e.g., Istio) to manage its containers and microservice interactions?
 - Is your organization using a version control system (e.g., Git) for code management?

- **Metrics**
 - Does your organization have automated tracking of the four key DevOps Research and Assessments (DORA) metrics for software delivery?
 - Are your DORA metrics in the [50]th percentile or better compared with “all industries” benchmarks?

2.1.3. **Open Systems Architecture.** Are open system tools, techniques, and practices implemented across the program? Evidence of an open-systems approach can be assessed with the following questions:

- Is your system an open ecosystem of subsystems (i.e., no vendor lock)?
- Does the government drive the integration through an authoritative Government Reference Architecture?
- What technical baseline documentation will the program require be delivered to it consistent with the program’s CDD (or equivalent), acquisition strategy, SEP, TEMP, and LCSP in order to reap the benefits of OSA?
- Does the program have the appropriate IP rights to this technical baseline documentation?
- Are system modules defined based on the need to keep pace with technology and threat evolutions?
− Are the key interfaces (hardware and software) between systems, subsystems, and critical components specified well enough for “plug-and-play”?
− Can full compliance to architecture and interface standards be verified?
− Can mission systems be developed, tested, and fielded in required cycle times with price points that keep them relevant?
− Has the program implemented a data framework that enables data to be shared within the system and across the data transport boundary?
− Do software intensive systems leverage a “Software Development Kit” or a similar guide for rapid integration?

2.1.4. Lifecycle Assessment. To what extent is the digital trinity implemented across the full spectrum of the program’s lifecycle?
− Does the digital trinity implementation address the full lifecycle of the weapon system?
− If the digital trinity is not implemented across the entire lifecycle, are the highest risk components of the lifecycle addressed?
− Is the implementation of the digital trinity within the associated lifecycle phases sufficient to replace, automate, or truncate formerly real-world activities with authoritative virtualization or automation?
− Does the system’s digital thread integrate design, development, fabrication, manufacturing, assembly, maintenance, supply chain, and sustainment activities? If not, does the digital thread encompass enough of the lifecycle to reduce integration and concurrency risks sufficiently to replace, automate, or truncate formerly real-world activities through authoritative virtualization or automation?

3. Process
The process for pursuing e-Program designations begins with a government Program Office assessment of the above criteria, and the associated artifacts demonstrating capability across the above criteria. The underlying assumption is that an effective implementation of the digital trinity will replace, automate, or truncate formerly real-world activities through authoritative virtualization or automation at the program or portfolio level. The PEO assesses and submits validated programs directly to the Service Acquisition Executive for an official e-Program determination and designation as appropriate using this scorecard and as the basis for the submission. In situations where an e-Program designation is not yet warranted, the Chiefs of Digital Engineering, Software, and Architecture, or other appropriate office, will provide specific details on where the program must improve and provide guidance and assistance to help the program succeed in this critical transformational initiative.